Decorrem desta definição, e do facto de o comprimento de um arco ser directamente pro-3 porcional à sua amplitude, as relações expressas na tabela seguinte:

Arco de cir- cunferência						o deliver
Amplitude, em graus	360°	180°	90°	45°	30°	60°
Comprimento	2πr	πι	$\frac{1}{2}\pi r$	$\frac{1}{4}\pi r$	$\frac{1}{6}\pi r$	$\frac{1}{3}\pi r$
Amplitude, em radianos	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{3}$

Para converter a amplitude de um ângulo de graus em radianos ou vice-versa procede-se do seguinte modo:

Exemplo

- 1. Escreva as seguintes amplitudes em radianos:
- a) 35°

b) 51,4°

c) 60° 21'

Resolução:

a) Como base para o seu raciocínio, pode usar a regra de três simples, dado existir proporcionalidade directa entre as duas unidades de medida.

Resulta que $35^\circ = \frac{35}{180} \times \pi \approx 0,61 \text{ rad}$.

b) 51,4° =
$$\frac{51,4}{180} \times \pi \approx 0,90$$
 rad

c)
$$60^{\circ} 21' = \left(60 + \frac{21}{60}\right)^{\circ} = 60,35^{\circ}$$

$$60,35^{\circ} = \frac{60,35}{180} \times \pi \approx 1,05 \text{ rad}$$

- 2. Escreva as seguintes amplitudes em graus:
- a) $\frac{\pi}{7}$ rad
- b) $\frac{2\pi}{5}$ rad

c) 5 rad

Resolução:

a) De novo, pode fazer uso da regra de três simples.

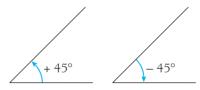
$$\frac{\pi}{7}$$
 rad = $\frac{180}{7} \approx 25,71^{\circ}$

- **b)** $\frac{2\pi}{5}$ rad = $\frac{2 \times 180}{5}$ = 72°
- **c)** π 180° 5 *x*

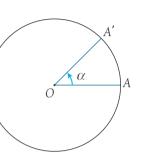
$$5 \text{ rad} = \frac{5 \times 180}{\pi} \approx 286,48^{\circ}$$

1.1.3. Ângulo e arco generalizados

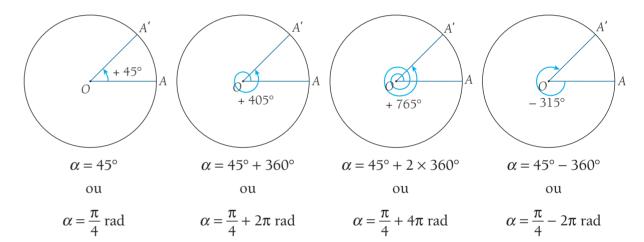
Recorde-se que, aquando do estudo das rotações, surge a necessidade de distinguir ângulos com amplitudes semelhantes, mas orientações distintas. Deste modo, considera-se, por convenção, que um ângulo orientado tem amplitude positiva quando a rotação se faz no sentido contrário ao dos ponteiros do relógio. Será negativa no outro caso.



Considere-se, agora, um ponto A, pertencente a uma circunferência que roda para a posição A', fazendo uma rotação de centro O (centro da circunferência) e ângulo de amplitude α .



Repare que a posição A' pode ser a mesma para diferentes amplitudes α . Centremo-nos no exemplo ilustrado a seguir:



De facto, na rotação de centro O e amplitude $(45 + 360k)^{\circ}$ ou $\left(\frac{\pi}{4} + 2k\pi\right)$ rad, com $k \in \mathbb{Z}$, a posição A' é a mesma.

Para representar um ângulo orientado, é habitual usar-se um sistema de eixos coordenados, onde se consideram quatro quadrantes (1.° Q, 2.° Q, 3.° Q e 4.° Q).

Considera-se o semieixo positivo das abcissas o lado de origem do ângulo.

